|
AQUAgpusph 5.0.4
|
Wendland kernel definition (3D version). More...
Macros | |
| #define | _KERNEL_H_INCLUDED_ |
| #define | M_PI 3.14159265359f |
| #define | iM_PI 0.318309886f |
Functions | |
| const float | kernelW (const float q) |
| The kernel value \( W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \). | |
| const float | kernelF (const float q) |
| The kernel gradient factor \( F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \). | |
| const float | kernelH (const float q) |
| The kernel partial derivative with respect to the characteristic height \( \frac{\partial W}{\partial h} \). | |
| const float | kernelS_P (const float q) |
| An equivalent kernel function to compute the Shepard factor using the boundary integral elements instead of the fluid volume. | |
| const float | _Omega (const float a, const float b) |
| Helper function to compute the solid angle of a rectangular patch, with a corner placed in the projection of the origin into the patch plane. | |
| const float | kernelS_D (const float d, const float t, const float b, const float s) |
| An equivalent kernel function to compute the Shepard factor using the boundary integral elements instead of the fluid volume. | |
Wendland kernel definition (3D version).
| #define _KERNEL_H_INCLUDED_ |
| #define iM_PI 0.318309886f |
\( \frac{1}{\pi} \) value.
| #define M_PI 3.14159265359f |
\( \pi \) value.
Helper function to compute the solid angle of a rectangular patch, with a corner placed in the projection of the origin into the patch plane.
b A | |XXXXXXX |XXXXXXX -+-----------> t
| d | Normal distance of the patch to the origin. |
| a | Width of the rectangular patch. |
| b | Height of the rectangular patch. |
The kernel gradient factor \( F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
The factor \( F \) is defined such that \( \nabla W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) = \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \cdot F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
| q | Normalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \). |
The kernel partial derivative with respect to the characteristic height \( \frac{\partial W}{\partial h} \).
The result returned by this function should be multiplied by \( \frac{1}{h^{d + 1}} \), where d is 2,3 for 2D and 3D respectively.
| q | Normalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \). |
An equivalent kernel function to compute the Shepard factor using the boundary integral elements instead of the fluid volume.
For practical purposes, the kernel computation is split in 2 parts: The polynomial part, where trucation errors are acceptable, and the divergent part, which requires an analytical solution. This function computes the divergent part.
The kernel is defined as follows: \( \hat{W} \left(\rho; h\right) = \frac{1}{\rho^d} \int \rho^{d - 1} W \left(\rho; h\right) d\rho \)
| d | Unsigned normal distance to the wall, \( \vert (\mathbf{r_j} - \mathbf{r_i}) \cdot \mathbf{n_j} \vert \). |
| t | Unsigned Tangential distance to the boundary element, \( \vert (\mathbf{r_j} - \mathbf{r_i}) \cdot \mathbf{t_j} \vert \). |
| b | 0 in 2D simulations, unsigned distance along the binormal direction in 3D simulations, \( \vert (\mathbf{r_j} - \mathbf{r_i}) \cdot \mathbf{b_j} \vert \). |
| s | Area of the boundary element, \( \Delta r^2 \). |

An equivalent kernel function to compute the Shepard factor using the boundary integral elements instead of the fluid volume.
For practical purposes, the kernel computation is split in 2 parts: The polynomial part, where trucation errors are acceptable, and the divergent part, which requires an analytical solution. This function computes the polynomial part.
The kernel is defined as follows: \( \hat{W} \left(\rho; h\right) = \frac{1}{\rho^d} \int \rho^{d - 1} W \left(\rho; h\right) d\rho \)
| q | Normalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \). |