AQUAgpusph 5.0.4
|
Spiky kernel definition (3D version). The spiky kernel is a common Cubic Spline kernel, where the middle know is displaced to grant that the maximum of the gradient lies on 1 / hfac. More...
Macros | |
#define | _KERNEL_H_INCLUDED_ |
#define | M_PI 3.14159265359f |
#define | WA 2.f / (2.f * HFAC - 1.f) |
Spline middle knot. | |
#define | WCON 15.f / (2.f * M_PI * (WA * WA + 4.f)) |
Renormalization factors. | |
#define | FCON 3.f / 2.f * WCON |
Functions | |
float | kernelW (float q) |
The kernel value \( W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \). | |
float | kernelF (float q) |
The kernel gradient factor \( F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \). |
Variables | |
__constant float | wa = WA |
__constant float | wcon = WCON |
__constant float | fcon = FCON |
Spiky kernel definition (3D version). The spiky kernel is a common Cubic Spline kernel, where the middle know is displaced to grant that the maximum of the gradient lies on 1 / hfac.
see Lahiri, Saptarshi Kumar, et al. "A stable SPH with adaptive B-spline kernel." Journal of Computational Physics 422 (2020): 109761.
#define _KERNEL_H_INCLUDED_ |
#define FCON 3.f / 2.f * WCON |
#define M_PI 3.14159265359f |
\( \pi \) value.
#define WA 2.f / (2.f * HFAC - 1.f) |
Spline middle knot.
|
inline |
The kernel gradient factor \( F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
The factor \( F \) is defined such that \( \nabla W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) = \frac{\mathbf{r_j} - \mathbf{r_i}}{h^d} \cdot F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
q | Normalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \). |
|
inline |
The kernel value \( W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
q | Normalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \). |
__constant float fcon = FCON |
__constant float wa = WA |
__constant float wcon = WCON |