AQUAgpusph 5.0.4
|
Wendland kernel C6 definition (2D version). More...
Macros | |
#define | _KERNEL_H_INCLUDED_ |
#define | M_PI 3.14159265359f |
#define | iM_PI 0.318309886f |
Functions | |
const float | kernelW (const float q) |
The kernel value \( W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \). | |
const float | kernelF (const float q) |
The kernel gradient factor \( F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \). | |
const float | kernelS_P (const float q) |
An equivalent kernel function to compute the Shepard factor using the boundary integral elements instead of the fluid volume. | |
const float | kernelS_D (const float d, const float t, const float b, const float s) |
An equivalent kernel function to compute the Shepard factor using the boundary integral elements instead of the fluid volume. |
Wendland kernel C6 definition (2D version).
#define _KERNEL_H_INCLUDED_ |
#define iM_PI 0.318309886f |
\( \frac{1}{\pi} \) value.
#define M_PI 3.14159265359f |
\( \pi \) value.
The kernel gradient factor \( F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
The factor \( F \) is defined such that \( \nabla W \left(\mathbf{r_j} - \mathbf{r_i}; h\right) = \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \cdot F \left(\mathbf{r_j} - \mathbf{r_i}; h\right) \).
q | Normalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \). |
An equivalent kernel function to compute the Shepard factor using the boundary integral elements instead of the fluid volume.
For practical purposes, the kernel computation is split in 2 parts: The polynomial part, where trucation errors are acceptable, and the divergent part, which requires an analytical solution. This function computes the divergent part.
The kernel is defined as follows: \( \hat{W} \left(\rho; h\right) = \frac{1}{\rho^d} \int \rho^{d - 1} W \left(\rho; h\right) d\rho \)
d | Normal distance to the wall, \( (\mathbf{r_j} - \mathbf{r_i}) \cdot \mathbf{n_j} \). |
t | Tangential distance to the boundary element, \( (\mathbf{r_j} - \mathbf{r_i}) \cdot \mathbf{t_j} \). |
b | 0 in 2D simulations, distance along the normal direction in 3D simulations, \( (\mathbf{r_j} - \mathbf{r_i}) \cdot \mathbf{b_j} \). |
s | Area of the boundary element, \( 2 * \Delta r \). |
An equivalent kernel function to compute the Shepard factor using the boundary integral elements instead of the fluid volume.
For practical purposes, the kernel computation is split in 2 parts: The polynomial part, where trucation errors are acceptable, and the divergent part, which requires an analytical solution. This function computes the polynomial part.
The kernel is defined as follows: \( \hat{W} \left(\rho; h\right) = \frac{1}{\rho^d} \int \rho^{d - 1} W \left(\rho; h\right) d\rho \)
q | Normalized distance \( \frac{\mathbf{r_j} - \mathbf{r_i}}{h} \). |